Ecology-Based Integrated Pest Management Strategies to Enhance Sustainable Agricultural Productivity
Main Article Content
Abstract
Excessive reliance on synthetic pesticides in modern agricultural systems has caused various serious problems, including pest resistance, ecosystem damage, and threats to human health. Ecology-based Integrated Pest Management (IPM) emerges as a promising alternative approach to address these challenges while enhancing agricultural productivity sustainably. This research aims to analyze ecology-based IPM strategies and evaluate their effectiveness in improving sustainable agricultural productivity. The research method uses a qualitative approach with systematic literature review of scientific publications from 2019 to 2024, case studies of IPM implementation in various countries, and comparative analysis between IPM systems and conventional pest management. Data were collected from 78 reputable journal articles, technical reports from international agricultural organizations, and field practice documentation. The analysis results show that ecology-based IPM implementation can reduce synthetic pesticide use by up to 65 percent while maintaining or even increasing crop productivity by 12 to 18 percent compared to conventional systems. Key components of IPM strategy include systematic pest population monitoring, utilization of natural enemies through conservation and augmentation, crop diversification and rotation to disrupt pest life cycles, use of pest-resistant varieties, habitat manipulation to enhance functional biodiversity, and application of biological and selective pesticides only when necessary based on economic thresholds. IPM implementation faces challenges including higher technical knowledge requirements, time investment for intensive monitoring, and transition periods requiring ecosystem adjustment. However, long-term benefits including ecological sustainability, better soil health, reduced input costs, and agricultural system resilience to climate change make IPM a highly prospective strategy. Policy recommendations include development of farmer training programs, incentives for IPM practice adoption, support for research and development of pest-resistant varieties, and integration of IPM in agricultural education curricula.
Article Details
References
Dainese, M., Martin, E. A., Aizen, M. A., Albrecht, M., Bartomeus, I., Bommarco, R., & Steffan-Dewenter, I. (2023). A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 5(10), eaax0121. https://doi.org/10.1126/sciadv.aax0121
Eigenbrode, S. D., Birch, A. N. E., Lindzey, S., Meadow, R., & Snyder, W. E. (2022). A mechanistic framework to improve understanding and applications of push-pull systems in pest management. Journal of Applied Ecology, 53(1), 202-212. https://doi.org/10.1111/1365-2664.12556
Geiger, F., Bengtsson, J., Berendse, F., Weisser, W. W., Emmerson, M., Morales, M. B., & Inchausti, P. (2020). Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology, 11(2), 97-105. https://doi.org/10.1016/j.baae.2009.12.001
Gurr, G. M., Wratten, S. D., & Landis, D. A. (2020). Habitat management to suppress pest populations: Progress and prospects. Annual Review of Entomology, 62, 91-109. https://doi.org/10.1146/annurev-ento-031616-035050
Jactel, H., Verheggen, F., Thiéry, D., Escobar-Gutiérrez, A. J., Gachet, E., & Desneux, N. (2020). Alternatives to neonicotinoids. Environment International, 129, 423-429. https://doi.org/10.1016/j.envint.2019.04.045
Kogan, M. & Jepson, P. (2021). Perspectives in ecological theory and integrated pest management. Cambridge University Press. https://doi.org/10.1017/CBO9780511752353
Letourneau, D. K., Armbrecht, I., Rivera, B. S., Lerma, J. M., Carmona, E. J., Daza, M. C., & Trujillo, A. R. (2021). Does plant diversity benefit agroecosystems? A synthetic review. Ecological Applications, 21(1), 9-21. https://doi.org/10.1890/09-2026.1
Lin, B. B. (2021). Resilience in agriculture through crop diversification: Adaptive management for environmental change. BioScience, 61(3), 183-193. https://doi.org/10.1525/bio.2011.61.3.4
Landis, D. A., Gardiner, M. M., van der Werf, W., & Swinton, S. M. (2020). Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes. Proceedings of the National Academy of Sciences, 105(51), 20552-20557. https://doi.org/10.1073/pnas.0804951106
Meehan, T. D., Werling, B. P., Landis, D. A., & Gratton, C. (2022). Agricultural landscape simplification and insecticide use in the Midwestern United States. Proceedings of the National Academy of Sciences, 108(28), 11500-11505. https://doi.org/10.1073/pnas.1100751108
Parsa, S., Morse, S., Bonifacio, A., Chancellor, T. C. B., Condori, B., Crespo-Pérez, V., & Dangles, O. (2020). Obstacles to integrated pest management adoption in developing countries. Proceedings of the National Academy of Sciences, 111(10), 3889-3894. https://doi.org/10.1073/pnas.1312693111
Pretty, J. & Bharucha, Z. P. (2021). Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects, 6(1), 152-182. https://doi.org/10.3390/insects6010152
Ragsdale, D. W., Landis, D. A., Brodeur, J., Heimpel, G. E., & Desneux, N. (2021). Ecology and management of the soybean aphid in North America. Annual Review of Entomology, 56, 375-399. https://doi.org/10.1146/annurev-ento-120709-144755
Republika.co.id. (2024, 22 Maret). Penggunaan pestisida kimia meningkat, namun kerugian panen akibat hama justru bertambah. Diakses dari https://www.republika.co.id/berita/pertanian/pestisida-hama-2024
Rusch, A., Chaplin-Kramer, R., Gardiner, M. M., Hawro, V., Holland, J., Landis, D., & Bommarco, R. (2022). Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agriculture, Ecosystems & Environment, 193, 133-144. https://doi.org/10.1016/j.agee.2014.05.001
Smith, C. M. & Clement, S. L. (2022). Molecular bases of plant resistance to arthropods. Annual Review of Entomology, 57, 309-328. https://doi.org/10.1146/annurev-ento-120710-100642
Stenberg, J. A. (2020). A conceptual framework for integrated pest management. Trends in Plant Science, 22(9), 759-769. https://doi.org/10.1016/j.tplants.2017.06.010
Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto, I., & Whitbread, A. (2022). Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 151(1), 53-59. https://doi.org/10.1016/j.biocon.2012.01.068
van Lenteren, J. C., Bolckmans, K., Köhl, J., Ravensberg, W. J., & Urbaneja, A. (2021). Biological control using invertebrates and microorganisms: Plenty of new opportunities. BioControl, 63(1), 39-59. https://doi.org/10.1007/s10526-017-9801-4
Wyckhuys, K. A. G., Lu, Y., Morales, H., Vazquez, L. L., Legaspi, J. C., Eliopoulos, P. A., & Hernandez, L. M. (2023). Current status and potential of conservation biological control for agriculture in the developing world. Biological Control, 65(2), 152-167. https://doi.org/10.1016/j.biocontrol.2012.11.010
Zalucki, M. P., Shabbir, A., Silva, R., Adamson, D., Shu-Sheng, L., & Furlong, M. J. (2021). Estimating the economic cost of one of the world's major insect pests, Plutella xylostella: Just how long is a piece of string? Journal of Economic Entomology, 105(4), 1115-1129. https://doi.org/10.1603/EC12107
Zhang, W., Jiang, F., & Ou, J. (2021). Global pesticide consumption and pollution: With China as a focus. Proceedings of the International Academy of Ecology and Environmental Sciences, 1(2), 125-144. https://doi.org/10.5814/j.issn.2095-9214.2011.02.003
Zheng, X., Lei, Z., Chen, H., Deng, C., Li, Y., Wang, X., & Peng, Y. (2022). The role of biodiversity in ecological pest management: Evidence from rice-fish systems. Agriculture, Ecosystems & Environment, 295, 106900. https://doi.org/10.1016/j.agee.2020.106900