PENERAPAN DATA MINING UNTUK PENGELOMPOKKAN HASIL DIAGNOSA PENYAKIT PESERTA JKN-KIS BPJS KESEHATAN KANTOR CABANG PRABUMULIH

  • Agrin Aulia Universitas Sriwijaya
Keywords: Diagnosis, K-Means Clustering, Data Mining

Abstract

BPJS Kesehatan has collaborated with several health facilities in Indonesia to provide health services. So far, the use of grouping the results of disease diagnosis of JKN-KIS participants used by BPJS Health Partners and also the Health Office only uses a general description of the patient data. Optimal utilization of disease diagnosis data from JKN-KIS patients has not been done. Therefore, Clustering is also a method of grouping several data objects into a certain group of information with a high degree of similarity. Testing the best value with the Elbow method produces a K value that is close to The Shape of a 90 degree angle that is in the 4th cluster. So therefore, the medical record data grouping system produces the best cluster by using 8 clusters.

References

Alnggraleny, C. (2013). Imovalsi Pelalyalnaln Kesehaltaln. 1, 85–93.
Alyu, R. D. V., & Ernalwalti, D. (2012). Tinjalualn Penulisaln Dialgnosis Utalmal daln Ketepaltaln Kode ICD-10 paldal Palsien Umum di RSUD Kotal Semalralng Triwulaln I. UDiNus Repository, 14.
Chen, M. S., Haln, J., & Yu, P. S. (1996). Daltal mining: Aln overview from al daltalbalse perspective. IEEE Tralnsalctions on Knowledge alnd Daltal Engineering, 8(6), 866–883. https://doi.org/10.1109/69.553155
Ediyalnto, Malral, N., & Intisalri, N. S. (2013). Pengklalsifikalsialn Kalralkteristik Dengaln Metode K-Mealns Cluster Alnallysis. Buletin Ilmialh Malt. Stalt. Daln Teralpalnnyal (Bimalster), 02(2), 133–136.
Endalrtiwi, S. S., & Setialningrum, P. D. (2019). Heallth calre quallity hals correlaltion with palrticipalnt saltisfalction of NHI in the primalry heallth falcilities in the Province of Yogyalkalrtal. Buletin Penelitialn Sistem Kesehaltaln, 22(3), 158–166.
Geethal, Al., & Nalsiral, G. (2014). Alrtificiall neurall networks’ alpplicaltion in wealther forecalsting – Using RalpidMiner. Internaltionall Journall of Computaltionall Intelligence alnd Informaltics, 4(3), 177–182. http://www.periyalruniversity.alc.in/ijcii/issue/Vol4No3December2014/IJCII 4-1-152.pdf
Halymaln, L. L., & Worel, J. N. (2014). Heallthy lifestyle behalviors the importalnce of individuall alnd populaltion alpproalches. Journall of Calrdiovalsculalr Nursing, 29(6), 477–478. https://doi.org/10.1097/JCN.0000000000000199
Kodinalriyal, T. M., & Malkwalnal, P. R. (2013). Review on determining number of Cluster in K-Mealns Clustering. Internaltionall Journall of Aldvalnce Resealrch in Computer Science alnd Malnalgement Studies, 1(6), 2321–7782.
Ongko, E. (2014). Peralncalngaln Sistem Palkalr Dialgnosal Penyalkit Paldal Ballital.
Jurnall Time, II(1), 1–5. https://doi.org/10.1007/s13398-014-0173-7.2
Palrteek, B. (2019). Daltal Mining alnd Daltal Walrehousing. Calmbridge University Press.
Walti, W., Malchmud, R., & Yurniwalti, Y. (2019). Alnallisis Kuallitals Pelalyalnaln Progralm Jalminaln Kesehaltaln Nalsionall di Rualng Ralwalt Inalp Rumalh Salkit X Kalbupalten Kerinci. Jurnall Kesehaltaln Alndallals, 8(2), 366. https://doi.org/10.25077/jkal.v8i2.1014
Xu, J., & Lalnge, K. (2019). Power k-mealns clustering. 36th Internaltionall Conference on Malchine Lealrning, ICML 2019, 2019-June, 11977–11991.
Yudi Algustal. (2007). K-Mealns – Peneralpaln, Permalsallalhaln daln Metode Terkalit.
Jurnall Sistem Daln Informaltikal, 3(Februalri), 47–60.
Zheng, X., Lei, Q., Yalo, R., Gong, Y., & Yin, Q. (2018). Imalge segmentaltion balsed on aldalptive K-mealns allgorithm. Euralsip Journall on Imalge alnd Video Processing, 2018(1). https://doi.org/10.1186/s13640-018-0309-3
Published
2023-01-31
How to Cite
Aulia, A. (2023). PENERAPAN DATA MINING UNTUK PENGELOMPOKKAN HASIL DIAGNOSA PENYAKIT PESERTA JKN-KIS BPJS KESEHATAN KANTOR CABANG PRABUMULIH. Jurnal Saintifik (Multi Science Journal), 21(1), 25-36. https://doi.org/10.58222/js.v21i1.123
Section
Articles